
Proof of Real-time Transfer: A Consensus Protocol
for Decentralized Data Exchange

Narayanan Ramanathan
Kandola Network

nara@kandola.network

Ragul Kumar
Kandola Network

gul@kandola.network

Siddharth Banerjee
Kandola Network

sb@kandola.network

Sriram Padmanabhan
Kandola Network

sriram@kandola.network

Abstract—Proof of Real-Time Transfer (PoRT) consensus is a
secure, highly scalable, decentralized data verification protocol
that supports the exchange of data with guarantees towards
privacy, data integrity and source authentication. It is built on
a modular framework that serves core functionalities towards
decentralized public key infrastructure (DPKI), message stan-
dardization and encryption, decentralized message verification
and storage. PoRT’s security guarantees stem from its adoption
of cryptographic primitives and their nuanced derivatives that
confer verifiability and further game theoretic constructs that
prove pertinence in work. High scalability of PoRT can be at-
tributed to network sharding and compute sharding that optimize
resource usage and to parallel chains that confer instant finality.
PoRT allows applications to define and implement purpose-
built message-driven business solutions across industries like
IoT, social media, instant messaging and gaming. Our analysis
indicates that PoRT consensus can achieve throughputs upto
976K messages per second on today’s commodity hardware.

Index Terms—blockchain, consensus protocol, network shard-
ing, compute sharding, parallel chains, decentralized data ex-
change

I. INTRODUCTION

The heart of decentralization resides in the building of a
trustless environment where decision making is placed in the
hands of distributed peer nodes as opposed to centralized
authorities. Through the adoption of decentralized identities
[1], the digital signature scheme [2], and distributed ledger
technology, decentralized networks confer privacy and data
security by design and are designed to be highly fault tolerant.
Depending upon the nature of the consensus protocol that
is powering the decentralized network, transaction throughput
and nature of finality vary from one to another. Proof of Work
[3], [4], Proof of Stake [5], [6], Pure Proof of Stake [7],
Proof of History [8] are some of the popular decentralized
protocols designed and deployed in the Decentralized Finance
(DeFi) space. A common theme among such protocols is that
improved scalability (high transactions-per-second and low
latency) is achieved at the cost of either security or the degree
of decentralization or both.

While there has been considerable focus in facilitating
DeFi platforms and the applications they serve, similar such
traction in developing consensus protocols that can power
far more encompassing decentralized data exchange platforms
with steeper operational demands is notably absent. Today
data exchange happens predominantly on centralized platforms
that are custom-built to serve individual data domains with

negligible emphasis on data standardization across domains
and key data handling protocols for security and privacy of
data all through its life-cycle. This paradigm has resulted in
data siloing which in turn has introduced numerous challenges
in data reusability, in data interoperability and largely in
establishing data provenance. In the ideal setting, we need
a fully decentralized data exchange platform that secures data
end-to-end, guarantees data privacy, authenticates source of
data and is built to support applications that demand very high
throughputs and low latency, while remaining content agnostic.
Such a platform restores data ownership back at the hands of
the producer and unlocks the true potentials of decentralized
data marketplaces.

In this paper, we are proposing a new consensus protocol
called Proof of Real-time Transfer (PoRT) that powers decen-
tralized data exchange platforms with the capabilities listed
above. The protocol is designed to facilitate the secure data
exchange between two authenticated entities upon running
a light-weight deterministic data verification algorithm in a
decentralized setting. The protocol is highly scalable and poses
strong defense against many kinds of malicious attacks.

II. RELEVANT WORK

Open Data Fabric [9] is a decentralized data exchange
and transformation protocol that is designed to make multi-
party data management more sustainable. Data from trusted
publishers flows through a computational graph undergoing
deterministic transformations and is made readily ingestible
for the AI / ML community for model training and for data
collaborators in general. DIoTA [10] is a decentralized ledger
based authentication framework that enables low powered IoT
devices with limited computational capacity to authenticate
other devices without expending too much energy. Roll-DPoS
[11] is a randomized scalable variant of Delegated Proof-
of-Stake that powers decentralized Internet-of-Things. While
retaining the scalability aspects of DPoS, Roll-DPoS adopts
distributed key generation, BLS threshold signature [12] and
random beacons in enhancing decentralization. [13] proposes
solutions for decentralized networks serving IoT applications
to defend against denial-of-service attacks using verifiable
delay functions. A decentralized message exchange protocol
is proposed in [14] whereby transactions between two users
are executed on the Ethereum public blockchain by deploying
smart contracts that perform user authentication and message
verification. A consensus protocol that builds trust models on978-8-3503-1019-1/23/$31.00 ©2023 IEEE

nodes and messages is proposed in [15] catering to commu-
nication relay in vehicular ad-hoc networks.

An alternate paradigm of solutions in the name of Remote
Attestation [16] exist for nodes in a decentralized network
to reason about the state of its untrusted peers. A node
(called the Verifier) can attest to the state of another node or
device (called the Prover) through hardware-based attestation
(Trusted Platform Modules [17]) or software-based attestation
or hybrid approaches. While hardware based attestation lever-
ages specialized hardware modules that enable secure storage,
secure computation and dedicated processor architectures (In-
tel SGX, ARM TrustZone), software based attestation assess
the software state of its remote peers through programs that
assess the memory reads and writes. Such approaches are
bound to play a critical role in the evolution of Blockchain
solutions.

III. DECENTRALIZED DATA EXCHANGE PLATFORM

A. Network model

The decentralized data exchange platform comprises a set of
nodes, each that meet a minimum criteria identified for com-
pute, memory and network speed. Each node serves as a full-
node catering to functionalities spanning message handling,
message verification and storage on-chain and get rewarded
for the roles served. They are subject to outages and attacks
just as public nodes typically are. They can communicate with
one another either directly (port-to-port) or through gossip
protocol. PoRT protocol is designed to function in a partially
synchronous network setting, whereby nodes share a global
clock and communication delays can be arbitrary up to an
unknown global stabilization time (GST). PoRT protocol is
designed for safety (always) and liveness (eventually, post-
GST).

B. Decentralized Public Key Infrastructure

Every actor (producer, consumer, node) that sends or re-
ceives or processes data on the decentralized data exchange
platform is conferred a globally unique decentralized iden-
tifier (DID URI) that follows W3C DID specifications [1].
Decentralized identifiers yield verifiable credentials to actors
such that they are cryptographically secure, respects privacy
and are systematically verifiable, thereby building trust in a
trustless environment. Verifiable credentials play a critical role
in zero-knowledge authentication and authorization. PoRT sets
up a decentralized public key infrastructure that maintains a
key-value database comprising the DIDs and DID documents,
which comprises cryptographic material (public keys), cryp-
tographic protocols and set of service endpoints that describe
authorization, capability delegation and modes of interactions
among DID subjects.

C. Standardized Message Schema

PoRT identifies domain-specific message schema for actors
from a wide variety of domains to exchange data with one
another. Message standardization is paramount for effective in-
formation exchange, for invoking value added services on data

TABLE I
STANDARDIZED DATA SCHEMA

Header
Message ID A globally unique identifier (GUID)
From address DID URI of the producer
To address DID URI of the consumer or group or self
Nonce Number incremented for every new message
Schema social-v-0.1 / iot-v-0.3 / other
Timestamp Dispatch timestamp
Producer Acks ack = 0 or 1 or 2
Chain ID DID URI of the chain the producer is tied to
Signature Digital signature of the message

Body
Data Encrypted payload

streams and for building decentralized data marketplaces pro-
moting data availability and data accessibility across domains.
Let PbKC and PvKP be the public key of the consumer and
the private key of the producer respectively. PoRT protocol en-
crypts payload at source and adopts digital signature scheme to
guarantee data privacy, data integrity and authenticity, as illus-
trated here: Sign(Hash{Encrypt(data, PbKC)}, PvKP).
The producer either sends the message to the entire network
with ack set to 0 (receives no acknowledgement) or sends it to
any one node with ack set to 1 or 2 (receive acknowledgement
after the designated node or a majority of the network received
the message). In the latter setting, the node that first received
the message broadcasts the message to the rest of the network.
Table I illustrates PoRT’s standardized data schema identified.

Algorithm 1 Verification Function Fv

1: function VERIFY MESSAGE(msg)
2: if not validSource(msg.from) then

return false
3:
4: if not validTarget(msg.to) then

return false
5:
6: if not authorizedTarget(msg.to) then

return false
7:
8: if not verifySignature(signature) then

return false
9:

return true

D. Message Verification Function

A transaction on the decentralized data platform is a fully
self-contained exchange of data (messages) between parties
that bear no dependencies to prior such transactions. As a
result, transaction verification comprises a set of atomic oper-
ations that entail (a) signature verification (source authentica-
tion) (b) a check on data privacy and integrity (c) a check on
source authorization. The verification function Fv (Algorithm

Fig. 1. Mempool data structure for four nodes are illustrated alongside chain based leader designations for each of the nodes. Messages of the same color
belong the the same chain. N1, N2, N3 are leaders for the chain 1 (green), chain 2 (orange), chain 3 (blue) respectively

1) is computationally light and is highly parallelizable and
hence paves way for massive throughput support.

E. Mempool Data Structure

Mempool is an organized queue where messages reside
before being dispatched for verification, the status of which
can be queried upon using public APIs. Every message that
was sent to the network either directly by the producer or by
the first node that received the message reaches the mempools
maintained by each node. Network topology and transmission
latency can result in messages making it to the respective
mempools in different order. Mempools across the network
taken collectively form a powerful data structure that captures
incoming message rate, latency in message handling, network-
wide message dispatch designations and availability status of
nodes. PoRT protocol provides Network Discovery Service
APIs that runs queries on mempools, that producers can avail
to select message dispatch leaders and that the individual
nodes can avail to check operational status of the network.

F. Messages as Entropy Source

The proposed message standardization schema implicitly
introduces entropy in message creation. With fields such as
timestamp, nonce, message ID being part of the proposed

structure, messages sent to the network by different producers
provide sufficiently as stores of entropy that the network can
tap into to derive randomness in the system. The network
dissuades duplicate messages from being sent for delivery
by levying penalties on the producers for such actions. The
network checks for duplicate messages being sent to the
network by periodically comparing the hash of the message
that was sent to the network matched that of an earlier
message. If such messages do arrive, the network flags the
producers and applies strict penalties.

G. Parallel Chains and Chain-based Leader Election

In the typical deterministic block finality settings, a leader
proposes a block comprising verified transactions and once
a majority (typically, over 50% of the validators) of the
committee of validators certify the block, the block is added to
blockchain and the transactions comprised are deemed final-
ized immediately. To prevent forking, protocols are carefully
designed such that the validators will never certify two or more
blocks simultaneously. This constraint results in deterministic
block finality falling short of instant block finality. PoRT
protocol achieves instant block finality, while preventing any
possibility of forking through the adoption of parallel chains
and chain-based leader election.

Fig. 2. Batch derivatives are created by inserting control messages (doctored messages that are designed to fail verification) on the original batch at random
indices while preserving the relative order of the original messages

Parallel chains constitute a set of independent chains that
are each dedicated to set of producers saving all of their
verified transactions on the same chain. From the context of
replicated finite state machines, parallel chains capture all of
the transitions in a producer’s state and accurately describe
their current state in self-contained fashion. The producer -
chain association is determined as follows: Let {p1, p2,pP }
and {c1, c2, ...cC} correspond to the decentralized identifiers
of P producers and C chains. Let h and ∥.∥d correspond to
sha256 hashing function and the hamming distance. The chain
index k∗ for producer pi is determined as

k∗ = arg min
j∈(1..C)

∥h(pi)− h(cj)∥d (1)

The chain index for each producer is saved in their respective
DID documents. Next, to prevent forking, PoRT protocol elects
one leader per chain and deems that only the elected leader
is authorized to propose a certain number of blocks on the
respective chain, following which a new leader is elected
for the said chain. Leader election is based on a weighted
combination of the node’s stake and a verifiable random
number [18] that the node generated.

Let n1, n2, ...nN be the decentralized identifiers of the N
nodes of the network and let (s1, s2, ..., sN) correspond to
their respective stakes (expressed as a proportion in the range
(0,1)). h is the sha256 hashing function as above. Let the case
be that a leader needs to be elected for chain cj . Node ni gen-
erates a random number ri = h(< (h(cj)⊕h(ni)), PvKi >),
where ⊕ is a XOR operator, < . > is a digital signature
function and PvKi is the private key of node ni. Let the
ordered set of bytes that make the random number ri be r0,
r1, r2, ..., r31. ri is mapped to a number in the range (0,1)
as follows:

r̂i = (r0 ⊕ r1 ⊕ ...⊕ r31)/255 (2)

. Node ni submits the proof πi =< (h(cj)⊕ h(ni)), PvKi >
to rest of the network. Verifying the random number ri entails
checking if < πi, P bKi > equals h(cj)⊕h(ni), where PbKi

is the public key of node ni. The weighted combination of
stake and the random number is computed as wi = a∗si+b∗r̂i,
where the weights 0 < a < 1, 0 < b < 1 and a + b = 1 and

shared with the entire network. The index l∗ of the leader for
chain cj is chosen as:

l∗ = arg max
i∈(1..N)

a ∗ si + b ∗ r̂i (3)

The leader determines the number of blocks nB that they
are authorized to propose on the chain as nB = ri mod K
where K is a PoRT identified threshold. The nodes with the
second and third highest weighted scores are selected as back-
up leaders, to step-in and serve the leader role for the given
chain, if the leader were to go down.

H. Chain-based Batches

Next, the leader who was elected to propose blocks for chain
cj , gathers messages residing on their mempool and creates
batches with each comprising those messages whose chain ID
designation was that of the same chain. Each batch is created
upon adding messages from the mempool in a first-in first-
out manner, while remaining cognizant of PoRT’s thresholds
for batch size (in MB), for maximum number of messages per
batch and maximum wait time for a message (in milliseconds).
These batches will subsequently be sent to the network for
verification. Should the entire network receive the same batch
of messages for verification ? The next subsection details why
not.

I. Batch derivatives

Here, we introduce a game theoretic construct called batch
derivatives that attests for a node’s pertinent work and its
thoroughness in running verification function on a batch
of messages. In the idealized setting, when a batch B is
dispatched to the network for verification, every node shall
independently run verification on the batch and shall return
their verdicts to the leader. But in a real-world setting, if
every node in the network had the same identical batch to
run verification on, the dishonest nodes may establish out-of-
band communications with fellow nodes, derive the answer
key for the batch and thereby gain unfair computational
advantage over honest nodes. Batch derivatives are formulated
specifically to disincentivize collusion within the network. A
batch derivative B′ is obtained by inserting one or more non-
conforming messages called the control messages at random

Fig. 3. An illustration of the multi-stage batch verification process

indices onto B. A control message is similar to a regular
message in structure, but is designed to fail verification either
due to source authentication problems or due to message
integrity issues. Let C = {c1, c2, ...cy} be the set of y control
messages. B′ = B ⊙ C is a batch derivative constructed
upon inserting these y control messages at random locations
onto B, such that the original messages in B still appear
in the same relative order after the insertion of the control
messages. The operator ⊙ signifies control message ingestion.
Figure 3 illustrates the creation of B′, given B and C. Next
subsection details how batch derivative constructs fit into the
decentralized batch verification schema.

J. Dynamic Subnets for Batch Verification

PoRT deploys a multi-stage batch verification process
whereby verifiably random subsets of the network are tasked to
serve any one of four roles in verifying the batch depending on
the stage of verification namely (a) creating and propagating
batch derivatives (b) running verification on batch derivatives
(c) running performance audits on a subset of the network
(d) play the role of a bystander who expends no computation
in verifying the batch. Through cryptographic sortition, nodes
that are invoked to play a role in batch verification decipher
their respective roles. Their roles are not known apriori to
the rest of the network, but are verifiable once they submit
their respective proofs. The above design renders adaptive
attacks on the network infrastructure ineffective in slowing
down batch verification and further disincentivizes collusion
among fellow Byzantines seeking undue advantage over their
honest peers.

Let the leader elected for chain cj be node nz . Let B
correspond to the batch that nz created, one comprising
transactions whose chain-IDs corresponded to chain cj . nz

generates a random number rz = h(< h(B), PvKz) >)
where h and < . > are the sha256 hashing function and the

digital signature function as before and PvKz is the private
key of node nz . As discussed before rz is verifiable when
proof πz =< h(B), PvKz) > is submitted and is a number
that can only be generated by nz . Representing the random
number rz as 32 ordered bytes in r0, r1, ..., r31, nz determines
the number of nodes to which it needs to send the batch B
to as p = maxi∈(0,31) ri mod N where N corresponds to
the number of nodes in the network. Next p node indices
are generated from rz applying bit shift followed by a mod
operation on rz p times as rz >> i mod N where i ∈ (1, p).
The p nodes identified by the leader form the first-stage of
batch verification. Each of the p nodes, by design, shall serve
the role of batch derivative creation and propagation as that
results in maximum reach across the network and also separate
batch verifiers from the batch leader by at least one hop
thereby rendering collusion less effective.

TABLE II
SUMMARY FROM BATCH DERIVATIVE PROPAGATOR

Result Header
Signature Signed hash of [Header | Result Body]
Batch ID h(B): Hash of the original batch
From address DID URI of Node Nx

Result Body
Role Batch derivative creator and propagator
Proof πx < h(B), PvKx >

Recipient node indices 44, 23, 69, 121, 5
Hash of batch derivatives h(B′

1), h(B
′
2), h(B

′
3), h(B

′
4), h(B

′
5)

1) Batch Derivative Creation and Propagation: Let node
nx be one of the p recipients serving as a batch derivative
creator and propagator in the first stage of verification. Node
nx repurposes rx in identifying the recipients for the batch
derivatives that it creates (following a process identical to that
of the leader in identifying recipients). nx generates different

batch derivatives B′
1, B′

2, ..., B′
k for the k recipients (k

is determined from rx) upon inserting control messages at
random locations onto the original batch B and dispatches
them to the respective recipient. Node nx broadcasts summary
of its work as illustrated in Table II.

Each of the k recipients are part of the second stage
of verification. Batch derivative recipients who are part of
the second stage (or any subsequent stage) identify their
respective roles using cryptographic sortition. Let ny be one
such recipient. ny generates a verifiable random number ry
upon hashing the digitally signed hash of the received batch
derivative and maps ry to r̂y , a float in the range (0,1), as
illustrated in equation (2). Preset ranges are identified (as
illustrated below) for different roles that node ny shall serve.

0 ≤ r̂y < 0.2 =⇒ ny propagates batch derivatives
0.2 ≤ r̂y < 0.6 =⇒ ny verifies batch derivative)
0.6 ≤ r̂y ≤ 0.8 =⇒ ny serves as a bystander
0.8 ≤ r̂y < 1 =⇒ ny runs verification audits

TABLE III
SUMMARY FROM BATCH DERIVATIVE VERIFIER

Result Header
Signature Signed hash of [Header | Result Body]
Batch ID Hash(B): Hash of the original message
From address DID URI of Node Nj

Result Body
Role Batch Verifier
Proof πx < h(B), PvKx >

Assigner DID URI of node Ni that assigned the
batch derivative

Batch derivative B′ : Batch derivative that was verified
Segments reviewed 1, 3, 4
Verification result h(M ′

1), h(M
′
3), h(M

′
4)

Indices of failed messages Indices where message verification failed

2) Batch derivative verification with Compute Sharding:
The role of batch derivative verification is assumed by the node
that generated a random number r̂y in the range (0.2, 0.6).
Dividing the batch derivative B′ into 5 equal segments, node
ny re-purposes ry to identify the number of sub-segments and
the corresponding segment indices over which it shall run the
verification function (Fb (Algorithm 2)). Each segment index
1,2,3,4,5 corresponds to that one-fifth sub-segment of the batch
(or batch derivative). The node could run batch verification
on more than one sub-segment. This process of randomized
selection of sub-segments of the batch that will be processed
introduces compute sharding in PoRT protocol. Compute
sharding further disincentivizes collusion. Node ny logs the
indices of messages that failed verification, computes the hash
of verified messages within each sub-segment (keeping the
relative order of verified messages unaltered) and sends its
results directly to the leader nz as illustrated in Table III and
broadcasts the same to the rest of the network.

Algorithm 2 Batch Verification Function Fb

1: function VERIFY BATCH(batch)
2: batch size← len(batch.messages)
3: valid messages← make([]Message)
4: invalid indices← make([]int)
5: for i = 1 to batch size do
6: is msg valid ←

VERIFY MESSAGE(batch.messages[i])
7: if is msg valid then
8: valid messages ←

append batch.messages[i]
9: else

10: invalid indices← append i
11:

return hash(valid messages), invalid indices

3) Network sharding in Batch Verification: A proportion
of the network, by design, is siphoned away from expending
computational resources of verifying a batch derivative. These
nodes generated a random number r̂y that fell in the range
(0.6, 0.8). These nodes submit the random number and the
proof that it was generated without bias for B to the rest of
the network (in fashion similar to Table ??.

4) Behavioral audits: If the random number r̂y that node
ny generated from B′ fell in the range (0.8, 1), then the node
shall check for role conformity. A role non-conformity event
could pertain to protocol violations such as (a) a node serving
a role on batch B that they were not designated to serve (b) a
node using doctored random numbers and biasing the progress
of batch verification. Node ny submits a summary of its work
to the rest of the network in the format illustrated in Table IV.

TABLE IV
SUMMARY FROM BATCH DERIVATIVE VERIFIER

Result Header
Signature Signed hash of [Header | Result Body]
Batch ID Hash(B): Hash of the original message
From address DID URI of Node Nj

Result Body
Role Audit
Proof πx < h(B), PvKx >

Conformant nodes 44, 21, 3, 103, 8, 9, 10
Non-conformant nodes 11, 12
Non-conformancy summary Test logs indicating non conformance

5) Leader based Consensus: The leader nz gathers veri-
fication results submitted and on a per batch-segment basis
checks if the hash of the verified messages match the hash of
the batch-segment with just the verified messages retained. Nz

determines the minimum number of votes needed per batch-
segment upon generating random numbers in the range (5 to
10) using the random number rz . Once there is consensus on
the list of verified messages in a batch, the leader calls off
any further verification on batch B, adds a block comprising
the verified messages to the chain that the block belongs to,
to that chain it is serving as the leader of.

TABLE V
PORT PROTOCOL’S DEFENSE AGAINST ATTACK VECTORS

Attack vector PoRT Defense
Replay attack: Producer sends duplicate messages to the Nodes run hash-collision test on incoming messages by
network, undermining message entropy and stressing the network comparing their hash with that of mempool messages
Sybil attacks: A malicious node operates under multiple identities In a stake based network, with role fluidity, Sybil attacks
simultaneously are not rewarding.
Censorship attack: The leader for the chain withholds messages Network Discovery Service API’s let any node run queries off of
from certain producers, not including them in a batch leader’s mempool and detect instances of withheld messages.
Batch incongruence: The leader or batch derivative creators and Audit nodes check for the hashes of batch derivatives with control
propagators may add or remove or shuffle messages thereby messages removed (as determined by batch verifiers) and
affecting consensus and state machine trace origins of batch incongruence if any
Freeloadership: Fellow Byzantine nodes may establish out-of-band Dynamic subnets introduce role unpredictability rendering
communication and share answer keys saving on compute such collusion stratagies less viable and less effective
Grinding attacks: Leaders could attempt adding blocks to chain Both leader election and batch verification depend on a verifiable
that will favor them in reelection. Leaders could attempt making random number that is generated with one’s own private key,
batches that favor fellow Byzantines making griding attacks ineffective.
Adaptive attacks: Malicious nodes may stage coordinated attacks Dynamically evolving subnets diminish success of coordinated
(DDoS) selectively on certain nodes (when they serve as leader) attacks through the lack of predictability in the roles
or on certain batches to delay consensus that other nodes will serve
Non-conformity in roles: Malicious nodes may perform operations Periodic validation of node’s actions outside through audits
their scope dissuade such attacks.

K. How PoRT defends against attacks

Defense against attacks is one of the primary focusses be-
hind the design of PoRT protocol. Attacks on the platform can
be staged by actors inside and outside of the network at various
stages of message handling, for instance at message arrival, at
batch formation and dispatch, at batch verification and at block
creation. PoRT’s defense to attacks stem from the adoption
of decentralized public key infrastructure, from its message
design which comprises payload encryption and carefully
designed message headers, from mempool state replication and
a dynamically evolving message verification protocol where
roles served by the network are non-deterministic apriori.
Crash faults are handled with backup leaders preidentified
and with redundancy in roles baked into the design for nodes
serving non-leader roles. In addition, PoRT makes Network
Discovery Service (NDS) APIs available, which bring in trans-
parence in message handling. The NDS APIs are available to
producers and network nodes to query the status of messages,
the status of mempools, the operational status of nodes, chain-
based leader designations and their backups. Finally, PoRT
protocol disincentivizes attacks by tying economic models for
rewards for honest work whereby the leader and non-leader
nodes are incentivized for speed and accuracy in data handling.
On the other hand, strict penalties are applied for malicious
work, ones that can diminish a node’s stake in effect its returns
from serving in the network. Table V details the different
attack vectors and the defense provided by PoRT protocol.

IV. BENCHMARKING

This section provides benchmarks we derived on network,
compute and memory utilization of the proposed consensus
protocol. We performed tests on AWS instances that were
spread across the United States, Europe and Asia to evaluate

network throughput and compute and memory utilization on
today’s commodity platforms. The consensus’ primary objec-
tive is to ensure high scalability using commodity hardware
and lowered costs for our customers and reducing entry
barriers for participating nodes.

A. Network throughput

Messages sent to the network shall adopt JSON format.
Figure 4 illustrates the size of message with breakups provided
for the header fields. While the header size shall remain fixed
at 298 bytes (215 bytes for the header fields and 83 bytes for
JSON overhead), the size of the encrypted message body can
vary from one domain to another. Assuming that the message
body measures to a few hundred bytes in size, the message as a
whole shall measure ∼0.5 KB and a batch comprising of 1000
such messages shall be around ∼0.5 MB. Upon compressing
each batch of 1000 messages using gzip (version 353.100.22),
we identified the median size of compressed batches to be
∼132 KB. Transporting such batches over a dedicated 1 Gbps
line sets the theoretical throughput limit at ∼976K messages
per second, assuming a 4% network loss. Below is a summary
of our observations from the AWS experiments on network
throughput.

• AWS experiment #1 (US East to EU West): Between two
AWS Instances (t2.micro) one in EU-West and another
in US-East, on different VPCs, using concurrent streams
on a single threaded single-CPU, we observed the data
transfer rate to be ∼774 Mbps.

• AWS experiment #2 (US East to US West): Between two
AWS Instances (t2.micro) one in US-East and another
in US-West, under the exact same setting as the above
experiment, we observed the data transfer rate to be ∼843
Mbps.

Fig. 4. Size of header fields in a typical message

On an average we observed network throughput to be 0.8 Gbps
on the AWS Network, which brought our theoretical through-
put limit to ∼794K messages per sec. on the above network.
However, upon leveraging parallel streaming frameworks such
as gRPC (HTTP 2.0), we can achieve more economies of scale
on network throughput. We have reserved this exercise for the
future.

B. Compute and Memory Performance

Our consensus protocol comprises highly parallelizable
atomic operations that can remain agnostic of any external
I/O dependency. Consequently, verifying a batch of messages
can be subdivided into atomic tasks such as batch derivative
generation, batch derivative verification and batch derivative
propagation using VRF and consensus gathering. Selecting a
set of AWS instances the configurations of which measure
up to commodity hardware, we ran batch verification tests on
each. The Table VI illustrates the configurations of different
AWS machines that were tested and the corresponding batch
verification throughput on each. Memory consumption was a
constant at approximately 2 MB per 1000 transactions

Figure 5 illustrates compute utilization and message
throughput of BD verification on AWS EC2 instances with
1 CPU core, 4 CPU cores, 8 CPU cores and 32 CPU cores. In
the near future, we will perform a similar analysis leveraging
commodity GPUs with thousands of low powered processing
cores, which will result in highly improved compute and
message throughputs.

TABLE VI
A BENCHMARK ON COMPUTE THROUGPUT

Result Header Compute Type Throughput (TPS)
1 (vCPUs) Virtual cores (AWS) 12,000
4 (vCPUs) Virtual cores (AWS) 31,000
8 (vCPUs) Virtual cores (AWS) 98,000
16 (vCPUs) Virtual cores (AWS) 117,000
32 (vCPUs) Virtual cores (AWS) 152,000
16 (32 threads) Physical Cores (baremetal) 213,000
32 (64 threads) Physical Cores (baremetal) 570,000

The experiments above indicated that memory (RAM)
footprint for BD verification was nearly constant at 2 MB
per batch (1000 messages). In the event of nodes having to
process 1 million messages concurrently, the expected memory
footprint for BD verification is well within today’s commodity
specifications.

V. DISCUSSIONS AND CONCLUSIONS

Proof of Real-time Transfer protocol is designed to power
decentralized platforms that serve content creation, social ap-
plications, enterprise communications, gaming and metaverse
applications. The protocol functions in a gasless setting where
no transaction takes higher precedence over another. In content
agnostic fashion, it simply provides guarantees towards the
delivery of source authenticated, secure, integrity-preserved
messages with reasonable message-order guarantees. With de-
terministic verification, dynamic subnets and compute shard-
ing, PoRT protocol imposes implicit bounds on compute and
network resource usage for message verification. Further, by
adopting parallel chains, the protocol features instant finality
of verified messages. Hence, decentralized platforms that are
powered by PoRT protocol can serve applications that demand
extremely high throughput and low latency.

Future revisions to PoRT protocol are envisaged along the
following lines. PoRT message verification protocol embrac-
ing verifiable computations with zero-knowledge proofs [19]
generated in trustless settings will further augment scalability
of the protocol without compromising security. Cryptographic
solutions that enable keeping the number of blocks a leader for
a chain is authorized to propose a secret until [20] after the
leader has fulfilled his role would further enhance security.
Adopting application-specific temporal rolling blockchains
[21] whereby the genesis block is updated periodically will
be critical to better manage storage requirements in the
decentralized platform. Token economics and the ensuing
incentivization for participating nodes play a vital role in the
sustenance of decentralized networks. Future revisions will
encompass our findings with regards to optimal designs for
the same.

REFERENCES

[1] M. Sporny, D. Longley, M. Sabadello, O. Steele, and C. Allen, “Decen-
tralized identifiers DID v1.0. 2021”, https://www.w3.org/TR/2021/PR-
did-core-20210803.

[2] Thomas Pornin, “Deterministic usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)”, RFC,
6979:1–79, 2013.

[3] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”,
Dec 2008. https: //bitcoin.org/bitcoin.pdf.

[4] Vitalik Buterin. “Ethereum: A next-generation smart
contract and decentralized application platform”, 2014.
https://github.com/ethereum/wiki/wiki/ White- Paper.

[5] Charles Hoskinson,“Why we are building Cardano”, 2017.
https://whitepaper.io/ document/581/cardano- whitepaper.

[6] Gavin Wood, “Polkadot: Vision for a heterogeneous multi-chain frame-
work”, 2020. https: //polkadot.network/PolkaDotPaper.pdf.

Fig. 5. Benchmarking performance on CPU cores in AWS EC2 Instances

[7] Silvio Micali, “Algorand: The efficient and democratic ledger”, CoRR,
abs/1607.01341, 2016. https://arxiv.org/pdf/1607.01341.pdf.

[8] Anatoly Yakovenko. “Solana: A new architecture for a high performance
blockchain v0.8.13. 2017”, https://solana.com/solana-whitepaper.pdf.

[9] Sergii Mikhtoniuk and Özge Nilay Yalçin, “Open Data Fabric: A
decentralized data exchange and transformation protocol with complete
reproducibility and provenance”, CoRR, abs/2111.06364, 2021. URL
https://arxiv.org/abs/2111.06364.

[10] Lei Xu, Lin Chen, Zhimin Gao, Xinxin Fan, Taeweon Suh, and Weidong
Shi, “DIoTA: Decentralized-ledger-based framework for data authentic-
ity protection in iot systems”, IEEE Network, 34(1):38–46, 2020. doi:
10.1109/MNET.001.1900136.

[11] IoTex Team, “Roll-DPOS:A randomized delegated proof of state scheme
for scalable blockchain based internet of things systems”, 2021.

[12] Renas Bacho and Julian Loss, “On the adaptive security of the
threshold BLS signature scheme”, Cryptology ePrint Archive,
Paper 2022/534, 2022. URL https:// eprint.iacr.org/2022/534.
https://eprint.iacr.org/2022/534.

[13] V. Attias, L. Vigneri and V. Dimitrov, ”Preventing Denial of Service
Attacks in IoT Networks through Verifiable Delay Functions,” GLOBE-
COM 2020 - 2020 IEEE Global Communications Conference, 2020, pp.
1-6, doi: 10.1109/GLOBECOM42002.2020.9322260.

[14] Kahina Khacef and Guy Pujolle, “Secure peer-to-peer communication
based on blockchain”, In Leonard Barolli, Makoto Takizawa, Fatos
Xhafa, and Tomoya Enokido, editors, Web, Artificial Intelligence and
Network Applications, pages 662–672. Springer International Publish-
ing, 2019. ISBN 978-3-030-15035-8.

[15] Rakesh Shrestha, Rojeena Bajracharya, Anish P. Shrestha, and Seung
Yeob Nam, “A new type of blockchain for secure message exchange in
VANET”, Digital Communications and Networks, 6(2):177–186, 2020.
ISSN 2352-8648. doi: https://doi.org/10.1016/j.dcan. 2019.04.003. URL
https://www.sciencedirect.com/science/article/pii/ S2352864818303092.

[16] Alexander Sprogø Banks, Marek Kisiel, and Philip Korsholm, “Remote
attestation: A literature review”, CoRR, abs/2105.02466, 2021. URL
https://arxiv.org/abs/ 2105.02466.

[17] Allan Tomlinson, “Introduction to the TPM”, In Smart Cards, Tokens,
Security and Applications, 2nd Ed., 2017.

[18] Silvio Micali, Michael Rabin, and Salil Vadhan, “Verifiable Random
Functions”, In Proceedings of the 40th Annual Symposium on the
Foundations of Computer Science, pages 120–130, New York, October
1999. IEEE.

[19] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler and M. Walfish,
”Doubly-Efficient zkSNARKs Without Trusted Setup,” 2018 IEEE
Symposium on Security and Privacy (SP), 2018, pp. 926-943, doi:
10.1109/SP.2018.00060.

[20] Luciano Freitas, Andrei Tonkikh, Sara Tucci-Piergiovanni, Renaud
Sirdey, Oana Stan, Nicolas Quero, Adda-Akram Bendoukha, Petr
Kuznetsov. “Homomorphic Sortition – Secret Leader Election for
Blockchain”. 2022, 10.48550/arXiv.2206.11519.

[21] R. Dennis, G. Owenson and B. Aziz, “A Temporal Blockchain: A Formal
Analysis,” 2016 International Conference on Collaboration Technologies
and Systems (CTS), 2016, pp. 430-437, doi: 10.1109/CTS.2016.0082.

