A Holistic Blockchain Architecture for IoT
Systems: Design Considerations and Challenges

Abstract—This paper introduces an IoT Blockchain platform
that encompasses a new decentralized consensus protocol named
Proof of Real-time Transfer (PoRT) that addresses the challenges
of privacy, security, scalability and storage in IoT systems. PORT
protocol preserves privacy by conferring decentralized identities
to every entity in its ecosystem, encrypts data at source and
preserves data integrity and authenticity using digital signatures.
PoRT adopts a novel construct for blockchain storage that
places no hard requirements on universal state, rather imparts
tamper resistance through cryptographic sortition driven sub-
chain replication across the network. Nodes maintains three local
chains namely, a main chain, a custody chain and a log chain.
While the main chain comprises blocks validated by the node and
the log chain saves summary of services rendered, the custody
chain comprises random segments of the main chain and the log
chain from across the network. The above construct is highly
scalable, is leaderless, and yields instant finality and tamper
resistance to chains. PORT combines the powers of cryptographic
sortition and Kademlia DHTs in running behavioral audits
placing the onus on the platform delivering on its data storage
promises. Finally, this paper discusses newer challenges to tackle
with formalized solutions in the space

Index Terms—IoT, blockchain, consensus protocol, decentral-
ized storage, cryptography

I. INTRODUCTION

Trust and transparency form the two core tenets of the Web3
vision, one that encompasses building secure, privacy-centric,
equitable digital environments that represent a fundamental
shift in how the world interacts today. The vision promises
a democratized internet that distributes power and payouts
among its many facilitators, while enabling authenticated
communications and yielding transparency and auditability
in services rendered. At the core of Web3 lies Blockchain
technology, one that is built on the foundations of peer-to-
peer networking protocols, cryptography, distributed systems
and data structures.

As a network of interconnected devices and sensors, the
Internet-of-Things range from smart home sensors to devices
that cater to industrial applications and healthcare, collect,
analyze and transmit data to end users. They are ingrained
in every facet of our lives and invariably carry sensitive
information that should not be censored, or breached, or
lost in transition. Transitioning IoT services from centralized
platforms to decentralized equitable architectures where solu-
tions begin with preserving privacy, data integrity and data
security and restoring data ownership at the hands of end
users, can unlock the many untapped potentials of this sector.
Such a transition, while naturally beneficial to end users,
will invariably expand the solution horizon with newer value

added services that benefit the solution providers as well. The
opportunities are discussed below.

o Improved security: Web3 technologies face reduced risks
of single point of failure, DDoS attacks and data breaches,
due to decentralization and the adoption of cryptography.

« Interoperability: With standardized data schema, Web3
enables seamless communication and integration between
different devices and IoT platforms.

« Digital ownership rights: Developing an NFT ecosystem
that issues digital certificates of ownership and supports
their monetization, creates newer streams of revenue.

o Smart contracts: Automated execution of complex busi-
ness logic between two parties through smart contracts,
reduces operational costs and improves efficiency.

o Decentralized data marketplaces: Users can sell and buy
data at decentralized markets, through tokens, and support
research, analytics and other business use cases.

o Token economics: Through the use of tokens, micro
payments can be issued to incentivize collaboration and
data sharing among devices or users.

o Community-driven development: Companies can lever-
age off of open-source tools, decentralized applications
that are largely developed by developers world wide.

A. The IoT Blockchain design criteria

Supporting full-fledged [oT ecosystems on decentralized
platforms entails designing a Web3 protocol that can handle
high volumes of IoT data without compromising on real-time
data processing, low cost, data security, data integrity and de-
centralization. IoT devices come in innumerable form factors
serving niche applications, while facing notable constraints
in one or more of power, memory, compute and network
connectivity. The identified protocol should enhance device
security, should secure data at source and be compatible with
standard IoT protocols such as MQTT and CoAP. Importantly,
it should be designed for energy efficiency and optimized
usage of memory, compute and network bandwidth.

Apart from designing the right consensus protocol, identify-
ing a well laid-out Blockchain architecture that is provisioned
to support value added services in phases is key. The platform
should be developer-friendly with support in the form of
developer tools, APIs and SDKs to enable developers to build
decentralized applications for IoT. Further, developer tools
should encompass writing and deploying smart contracts and
being able to periodically verify the integrity behind their
execution. The architecture should spell out provisions for
decentralized storage and its proposed support for analytics.

TABLE I
A SUMMARY OF POPULARLY RECEIVED 10T BLOCKCHAINS

Summary of Blockchain

Consensus Mechanism

IoT Relevance

IOTA [6]: Focuses on enabling trust-less machine to
machine transactions. Adopts Directed Ayclic Graph like
data structure called Tangle. For every new transaction
added to Tangle, two older transactions are to be.
validated. This forms a web of interconnected

approvals gathering consensus on transactions.

Protocol is leaderless and has no miner
or validators. Proof of Work (PoW) is
employed in a lightweight manner. A
coordinator node that the network
trusts, plays a critical role in the
prevention of double-spending.

Fast, feeless and highly scalable. Allows

for simultaneous processing of transactions.
Employs pruning to remove older transactions
thereby managing storage requirements. Paved
way for IoT device interoperability. Enabled
tamper resistance through cryptography.

IOTA 2.0 [7]: Adopts Fast Probabilistic Consensus
doing away with coordinator nodes. Offers improved
resistance to a variety of malicious attacks.

Proof of Work requirements are adjusted
dynamically based on network state
and current demand.

Introduced support for smart contracts
an upgraded wallet architecture for the
supply of IOTA tokens.

IOT Chain [8]: Enables value transfer in IoT systems
Adopts DAG structure that allows parallel processing
and increased throughput. Encrypts data at source.

Uses hybrid consensus in Proof of Work
(to select nodes) and Practical Byzantine
Fault Tolerance (for fast finality).

Prevents data breaches, device tampering and
cyber attacks with Trusted Execution Module
(TEM). Supports smart contracts and Dapps.

IoTeX [9]: A DAO governed blockchain that aims

to create Internet of Trusted Things (IoTT). They adopt
Trusted Execution Environment (TEE) and Hardware
Security Modules (HSM) with strong focus on privacy.

Uses a hybrid consensus in Delegated
Proof of Stake (DPoS) and Roll-DPoS
(introduces randomness), both known for
being highly efficient and scalable.

Root chain provides the decentralized and
secure infrastructure, while sidechains allow
for high scalability. Supports smart contracts
and building niche IoT applications.

VeChain [10]: The VeChainThor blockchain is designed
to provide a secure, efficient and trustless product
tracking and improved supply chain management. It is
compatible and interoperable with Ethereum.

Uses Proof of Authority (PoA)
consensus. New blocks are created by
Authority Masternodes that are entrusted
with the task based on their reputation.

Users IoT devices to track products from
production to distribution to consumption
Supports the creation of smart contracts,
sidechains and custom tokens.

Hyperledger [11]: It is a permissioned blockchain

Supports pluggable consensus, allowing

Used in supply chain management

that is highly customizable with a plug and play modular
architecture. Designed for enterprise adoption .

for users to choose from different
consensus algorithms based on need.

for real-time visibility and transparency.
Supports smart contracts (chaincode).

Helium [12]: Is a decentralized wireless network

for IoT devices. It uses Low Range Wide Area
Network and blockchain to secure the network.
Devices that expand coverage are paid in HNT tokens.

While main consensus is called Proof of
Coverage, validation of coverage involves
Federated Byzantine Agreement and Proof
of Elapsed Time.

Provides an affordable and cost-effective
solution for IoT device connectivity.
Provides a secure and transparent platform
to exchange data between one another.

Atonomi [13]: Built atop Ethereum. Uses a reputation
based system to verify the identities and behavior of IoT

Uses Proof of Reputation (PoR) which
combines traditional Proof of Work

High scalability stems from PoR consensus.
Only nodes with high reputation scores get

devices. Under its ecosystems, devices from different
manufacturers can seamlessly inter-operate.

Proof of Stake consensus mechanisms
to achieve high efficiency

to take part in consensus gathering. Devices
are secured at onboarding.

Finally, no Web3 protocol is complete without a mature foken
economics model, one that will keep centralization concerns
at bay, while ensuring a positive sum game for the facilitators.

In this paper, we are introducing a consensus protocol
named Proof of Real-time Transfer (PoRT) with multiple
revisions made to its prior version. We are also laying out
our vision for an all encompassing Blockchain architecture
that will help transitioning IoT services to Web3 one-step at
a time.

II. LITERATURE REVIEW

Decentralized products and services in the spaces of finance,
investments, gaming and collectibles grew in adoption over
the past decade. The consensus protocols [1], [2], [3], [4] that
power the layer 1 platforms serving such applications, each
carefully selects an operating point that balances the needs for
scale, security and decentralization and wherever applicable,
layer 2 solutions [5] have ably bridged scalability gaps albeit
at the transaction volumes that are far lower than that of IoT
applications.

Many consensus protocols have been proposed for the
onboarding of IoT applications onto Web3 platforms in the
form of public blockchains and private blockchains. Common

themes to such protocols has been that they are built for
fast consensus, high throughput and low latency. Directed
Acyclic Graph (DAG) based data structure was chosen over
the traditional blockchain by a handful. Some protocols take
energy expended in gathering consensus as a key design
criteria. Table I summarizes some of the prominent Web3
protocols proposed for IoT systems.

With IoT devices not directly connected to blockchain plat-
forms, but rather through entities that provide them with the
requisite computing resources, BIoT paradigm [14] proposes
protocols for the secure publication of sensor data in public
blockchains. [15] proposes metrics to evaluate the efficiency of
Blockchain-IoT architectures and propose a novel architecture
named BIIT. They also delve into data storage challenges
commonly observed in this sector. Blockchain driven access
control protocols for smart grid systems is yet another popular
research topic. [16], [17] propose well received solutions
in this space. Data analytics and analytics driven inference
are inseparable from the IoT ecosystem. Privacy preserving
federated learning solutions [18], [19] have been proposed for
developing analytics models through secure data sharing.

III. PROOF OF REAL-TIME TRANSFER (PORT)

A. Decentralized Identity and Device Onboarding

Our design begins with assigning decentralized identities
to every entity (nodes, IoT devices, end users) that is either
an inherent part of the ecosystem or one that interacts with
it. Decentralized identities (DID) [21] plays a critical role in
authentication, authorization and access control. Each entity
generates a public-private key pair through elliptic curve
digital signature algorithm such as Ed25519, derives its decen-
tralized identify from a hash of the public key and submits a
signed DID document comprising its public key, authentication
mechanisms and service endpoints to the DID registry. It is
estimated that generating 256 bit keys using Ed25519 requires
32 bytes of memory and the device needs to expend 450K
operations in compute.

By design, a good proportion of IoT devices are constrained
for memory and compute and will likely lack the capabilities
required for key-pair generation and digital signatures. On-
boarding them directly onto the proposed platform may be
infeasible. A set of coexisting IoT devices typically commu-
nicate to the outside world through a gateway device (a central
hub) through wired or wireless means (Wi-Fi, Bluetooth,
Zigbee or Z-wave) using light-weight pub/sub protocols such
as MQTT [20]. The gateway device is typically configured rea-
sonably for compute, storage, power and network connectivity
and serves as a liaison between the end-user and the respective
devices. In similar vein, from a Web3 onboarding perspective,
the gateway device shall serve as the Web3 point-of-contact,
relaying sensor measurements adhering to protocols identified
by the platform.

B. Peer-to-peer Networking Protocol

The proposed platform adopts the d-overlay network ar-
chitecture [22] where each node connects with d peers and
establishes direct port based communication with its peer.
This design is resilient to network failure and facilitates
decentralized censorship-resistant communication. With the
primary purpose of the platform being decentralized delivery,
storage and retrieval of IoT data streams, optimal selection of
the d peers in the overlay network is critical as that plays a
direct role in network throughput, network latency, resource
lookup, data storage and its subsequent retrieval. PoORT adopts
a combination of Perigee [23] and Kademlia protocols [24] in
selecting the d best peers.

Perigee selects d-peers for each node of the network with the
objective of minimizing overall network latency and optimal
load balancing among the nodes of the d-overlay network. On
the other hand, Kademlia facilitates efficient resource look-
up across the network using Distributed Hash Tables (DHTs),
playing a direct role in storage replication, storage tracking
and data retrieval. Kademlia protocol is summarized below:

o Bitwise XOR distance: Every entity is associated with
a unique 256 bit key (the same as DID) and distance
between two keys is computed using bitwise XOR.

0000 0001 0010 0011 0100 0101 0111 1000 1001 1010 1011 1100 1101 1110 1111

DB 6 RO B D o

nl s1 vl n2 s2 n3 V2.

Bucket 2 U’__——"—— Tomen, Bucket 4

~ TS

Bucket 1 Bucket 3

L L e

nl n2 n3

v ,’ ‘\ y’ ‘\
-
n4 n5

Fig. 1. An illustration of Kademlia 4 bit keyspace and the routing table of
node nl. In the illustration {nl, n2, n3, n4, n5} correspond to nodes; {sl,
s2} correspond to smart contracts; {v1, v2} correspond to videos; {tl, 2}
correspond to text files

o Self-organizing of nodes in keyspace: With this distance
metric, nodes organize themselves in the keyspace and
are deemed as the point-of-contact for any key,value
pair that was closest to it in the keyspace.

o Routing table: Nodes maintain a routing table that as-
sumes a tree-like structure, with every level representing
a prefix of the binary node ID. The routing table is
divided into buckets, with each bucket comprising nodes
that share a common prefix and nodes look for peers that
are closest to it in the keyspace.

o Resource lookup: To find a particular node or data from
within the network, a node contacts nodes that are closer
to the target ID in the keyspace and gradually narrows
down the search space until the resource is found.

« Distributed Hash Table: DHTs are formed through in-part
or holistic aggregation of continuously updated routing
tables from across nodes.

o Bootstrap the network: For a node to join the network,
the node must know the IP address and port number of at
least one node of the network. The bootstrap node gathers
information about other nodes of the network from its
peers.

Figure 1 provides an illustration of a 4 bit keyspace, the
routing table of a node and its set of buckets. In our design,
node nl shall be the point-of-contact for smart contract sl
and video v1, while node n4 shall the point-of-contact for
text files £1 and ¢2. This association arises implicitly from
keyspace proximity. PoRT protocol adopts a hybrid lookup
algorithm combining the criteria set by Perigee and Kademlia
in peer selection. PoRT currently adopts the tried and tested
TCP/HTTP2.0 for network communication. A potential switch
to the faster and more secure QUIC protocol is on the cards.

C. Standardized Message Schema

PoRT prescribes a standardized message schema for all de-
vices onboarded onto the platform to adopt to send or receive
messages. The standardized schema facilitates interoperability
between devices and simplifies the network’s message verifi-
cation operations. Non-conforming messages are rejected by

TABLE II
STANDARDIZED DATA SCHEMA

Header
Message ID A globally unique identifier (GUID)
From address DID URI of the producer
To address DID URI of the consumer or group or self
Nonce Number incremented for every new message
Schema IoT-v-0.3
Timestamp Dispatch timestamp
Time-to-live {None, 1 week, 1 month, 1 year, 5 years}
Producer ACK | ACK =0 or 1
Signature Digital signature

Body

Data [Encrypted payload

the platform. Decentralized Public Key Infrastructure (DPKI)
plays a critical role in the message creation process. Let
PbKc and PvKp be the public key of the consumer and
the private key of the producer respectively. PoRT protocol
encrypts payload at source and adopts digital signature scheme
to guarantee data privacy, data integrity and authenticity, as
described below.

Sign(Hash(Encrypt(data, PbK¢)), PvKp) (1)

Producers can request for any one of three services namely,

o Delivery only: Producer can set Time-to-live field to None
and thereby request message delivery and not storage.
The consumer’s DID document should have listed the
producer as an authorized sender of messages.

o Storage only: Producer can set 7o address to his own
address and thereby request storage for the duration listed
in the Time-to-live field.

o Delivery and Storage: Producer can opt for both services.

When ACK is set to 0, producer requests no acknowledgement
of message delivery. When set to 1, producer shall receive
acknowledgement when the designated leader received the
message. Table II illustrates PORT’s standardized data schema.

D. Message Dispatch for Verification

The proposed platform makes available Network Discovery
Service APIs that return the list of active nodes, their IP
addresses and the respective ports open for communication.
The producer dispatches the message created using the schema
detailed above to 5 randomly selected nodes. The nodes run
message verification function F), as detailed in Algorithm 1.
Message verification comprises a set of atomic operations that
entail (a) signature verification (source authentication) (b) a
check on data privacy and integrity (c) source authorization.
It is computationally light and is highly parallelizable.

E. Dispatch to Leader Node for Delivery and Storage

If the message passes verification, then it dispatched to
the leader node for fulfillment of delivery and storage as
requested by the producer. Identifying the leader node involves
no leader election. The leader node for a verified message is

Algorithm 1 Verification Function F,
1: function VERIFY_MESSAGE(msg)
2: if not validSource(msg.from) then
return false

3:

4 if not validT arget(msg.to) then
return false

5:

6 if not authorizedT arget(msg.to) then
return false

7:

8 if not veri fySignature(signature) then
return false

9:

return true

none other than the node that is closest to the producer of that
message in the keyspace K. The design of largely assigning
a producer’s messages to a leader was chosen to better assist
delivery tracking and storage tracking for a producer across
time. Dispatching the message to the leader node can happen
either directly through port-based communication, if the leader
node happens to be on the routing table or through Kademlia’s
efficient resource lookup approach. Let there be N nodes in
the network and let the keys of n nodes in the network be N,
i € (1..n). Let the producer’s key be P. Let f correspond to
the bitwise XOR distance function. The index of the leader
node N7 is identified as

j*=arg min_f(N;, P) 2)

i€(l..n)

If the message was marked up for delivery, the leader node N
dispatches the message to the application layer for its timely
delivery and . If the leader node N was not reachable, then
the node that is next closest to the producer in K assumes
responsibility for the message. The 5 nodes that were tasked
with message verification are invested in the process until the
leader node has officially dispatched the message for delivery.
PoRT protocol decouples delivery of verified messages from
fulfilment of storage requests, as the latter is not a real-time
requirement as is the former.

F. PoRT Storage Thesis

On-chain storage, in the traditional sense, typically involves
a leader who proposes a block, a committee of validators who
arrive at a consensus in decentralized fashion on the validity
of the block and the entire network working in unison towards
maintaining a single universal truth on chain state. In the event
of a fork, the process stalls until a corrective course of action is
adopted. While this process imparts immutability to data stored
on chain and embraces the core tenets of decentralization,
the process can be slow and quite expensive for end users.
While maintaining universal state is paramount for general
DeFi applications, the question really is, is universal state
maintenance a required feature for storing general purpose
data in decentralized settings ? For instance, storing the

image file of Bored Aped Yacht Club #3368 (133 KB) on
Bitcoin and Ethereum will cost a prohibitive 0.0284 BTC and
7.9 ETH respectively [25]. Some of the popular standalone
decentralized storage solutions such as [26], [27], [28] pose
amenable costs for storing general purpose data.

PoRT proposes a fundamentally new solution for decen-
tralized storage that comes with data immutability, data repli-
cation, storage tracking, persistence in data storage and data
retrieval. PORT’s thesis for decentralized storage is that locally
maintained chains with partial state replication, the settings of
which are entirely determined by verifiable random functions
and cryptographic sortition, yields censorship resistance and
preserves chain integrity while keeping centralization at bay.
In addition, PoRT adopts sortition driven behavioral audits,
on-demand proofs of storage and slashing of incentives in the
event of non-compliance. This disincentivizes maliciousness
and promotes protocol adherence.

G. Three Local Chains
Each node maintains three local chains namely,

o Main chain: Comprises 4 temporal chains, each dedicated
for data that required a certain time-lo-live (TTL) as illus-
trated in Table II. The node aggregates messages that it
served as the leader for, sorts them into 4 blocks based on
TTL, and adds the blocks to the corresponding temporal
chain once it met a certain size criterion. Temporal chains
are roll-over chains that retire the genesis block after a
preset time has elapsed.

e Log chain: Summary of tasks performed by a node in
serving the network: message verification, message de-
livery, storage, chain custodianship, behavioral audits are
written onto blocks and saved onto this chain.

¢ Custody chain: Comprises snapshots of main chains, log
chains and custodian chains from across the network apart
from blocks that were sent to the node for storage by
leader nodes for the respective blocks.

H. VRF and Cryptographic Sortition in Storage Replication

The standardized message schema illustrated in Table II
implicitly introduces entropy in message creation. With fields
such as timestamp, nonce, message ID being part of the
message schema, messages sent to the network by different
producers provide sufficiently as stores of entropy that the
network can tap into to derive randomness in the system. Node
Nj; creates a block B comprising messages that the node is
serving as a leader for. As mentioned above, all the messages
comprised in block B have the same TTL factor. Using block
B as a source of entropy, IV; generates a random number as
described below. Let (PbK;, PvK;) correspond to the public
and private keys of N;. Let h be the SH A256 hashing function
and < . > be the digital signature function. IV; generates a

random number 7; as follows.
T = h(< (h(B), PUK]' >) 3)

If other nodes of the network are provided with the random
number 7, the block B and the proof 7; =< h(B), PvK; >,

they can verify the randomness of r; by checking if <
7j, PbK; > is equal to h(B) and if h(r;) is equal to r;. It is
important to note that other nodes cannot guess r; prior to N;
providing them with it, as generating r; involves PvK; that
only NN; has in possession. PORT combines the verifiability in
the random number generated with cryptographic sortition in
creating a dynamically evolving game of storage and audits,
detailed below.

Let rg, 71, 72, ..., 731 be the ordered set of bytes that make
the random number ;. Let @ be the bitwise XOR operator.
N; maps r; to a 8 bit number as shown below.

fj = (7’0@7’1@...@7‘31) 4)
Nj; identifies the number of nodes it shall request dispatch
block B to, requesting storage on their respective custody
chains as p = max(5, 7#; mod 10), where mod is the
modulo operator. Next, IN; re-purposes the same random
number r; to identify the node indices of the p nodes. Let >>
correspond to the right bit shift operator. The p node indices
are generated from 7; by applying right bit shift operation
followed by a mod operation p times as #; >> ¢ mod n,
where ¢ € [1..p]. Let N; be a node index thus derived. N;
dispatches {B, r;, m;} to N;, requesting storage for B in
N;’s custodian chain. N; logs the retraceable steps above onto
its log chain

@ Dispatchers Block Stores Block @ Runs audits
° Main chain replicator @ Custody chain replicator @ Log chain replicator

Fig. 2. An illustration of PoRT’s game of storage and audits using crypto-
graphic sortition

N; verifies if 7; was indeed random and was obtained from
block B. It further verifies if its node index fell within the
list of indices that N; was supposed to dispatch block B to,
requesting storage. Upon passing the two checks, IV; generates
its own random number r; as r; = h(< (h(B), PvK; >),
where PvK; is its private key. It maps r; to a number in
range (0,1), obtaining #; (as illustrated for #; in equation 4)
and further dividing it by 255. PoRT protocol assigns preset

ranges for the normalized 7; that each dictate a role that NNV,
is allowed to assume.

0<7; <03 = store block B on custodian chain
0.3<7 <04 = propagate B to other nodes
04 <7 <06 = store b blocks prior to B from N;’s
main chain onto its custodian chain
0.6 <7 <08 == store most recent b blocks from N;’s
log chain onto its custodian chain
0.8<7 <09 = store most recent b blocks from N;’s
custodian chain onto its own chain
09<7 <1 = run storage audits

L. Running Storage Audits

Storage audits serve the key purpose of verifying if the node
under audit has continuously maintained the integrity of the
three local chains, with never once tampering with a chain
apart from retiring genesis blocks when its time to expiry was
met. Let N, be the node performing the storage audit and let
N, be the node that is under audit. N, gathers logs from its
peers that pertains to their interactions with N, and pieces
together the random snapshots the network has saved from
N,’s main chain, log chain and custodian chain. N, audits
Ny as detailed below

« Hash request based on chain height: Providing N, with
a set of ranges of block heights, NV,, can request the hash
for each range of blocks.

« Hash request based on byte ranges: Instead of hashes ex-
tracted using holistic blocks from the chain, N, could
request IV, for the hash of a certain range of blocks
starting from byte b; until byte bs.

o Block request: N, could ask N, to dispatch a specific
block from a specific local chain.

e Age of blocks on temporal chains : N, could ask N, for
the age of certain blocks on its temporal chains.

IV. DISCUSSIONS AND CONCLUSIONS

PoRT protocol preserves privacy of every entity in its
ecosystem, secures data at source, preserves data integrity
and authenticates every communication. The protocol adopts
efficient peer-to-peer network design that combines Perigee
and Kademlia in weighted fashion for low latency and efficient
resource lookup. Its storage thesis is unique and sets a new
paradigm for decentralized storage and storage audits. By
applying cryptographic sortition, PORT preserves role secrecy
and mitigates many malicious attacks.

In future, we will expand on PoRT data retrieval, introduce
Zero Knowledge proofs for storage, lay the foundations for
executing smart contracts and analytics on our platform.
We will formally introduce PoRT Tokenomics and will run
extensive benchmarking exercises on the protocol.

REFERENCES

[1] Nakamoto, Satoshi. “Bitcoin: A Peer-to-Peer Electronic Cash System.”
(2008).

[2]
[3]
[4]
[5]

[6]
[7]

[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

Buterin, Vitalik. “A Next Generation Smart Contract & Decentralized
Application Platform.” (2015).

Yakovenko, A. T.. “Solana : A new architecture for a high performance
blockchain v 0 . 8.7 (2018).

Chen, Jing and Silvio Micali. “Algorand: A secure and efficient dis-
tributed ledger.” Theor. Comput. Sci. 777 (2019): 155-183.

Gangwal, Ankit, Haripriya Ravali Gangavalli and Apoorva Thirupathi.
“A Survey of Layer-Two Blockchain Protocols.” J. Netw. Comput. Appl.
209 (2022): 103539.

Popov, Serguei Yu.. “The Tangle.” (2015).

Miiller, Sebastian, Andreas Penzkofer, Nikita Polyanskii, Jonas Theis,
William Sanders and Hans Moog. “Tangle 2.0 Leaderless Nakamoto
Consensus on the Heaviest DAG.” IEEE Access 10 (2022): 105807-
105842.

ToTChain Team, “The ToTChain
https://iotchain.io/pdf/web/ITCWHITEPAPER .pdf
IoTeX Team, “Roll-DPoS: A Randomized Delegated Proof of Stake
Scheme for Scalable Blockchain-Based Internet of Things Systems.”
(2018).

VeChain Team, “Web3 for better: Whitepaper
https://www.vechain.org/assets/whitepaper/whitepaper-3-0.pdf
The Hyperledger White Paper Working Group. “An Intro-
duction to HyperLedger”, https://www.hyperledger.org/wp-
content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
Haleem A, Allen A, Thompson A, Nijdam M, Garg R. “Helium: A
Decentralized Wireless Network”, Release 0.4.2, 2018

Emery V, Zamovsky A, Fragale D, Kinnaird P. “Atonomi: The Secure
Ledger of Things v0.9.2”

Urien, Pascal. “Blockchain IoT (BIoT): A New Direction for Solving
Internet of Things Security and Trust Issues.” 2018 3rd Cloudification
of the Internet of Things (CIoT) (2018): 1-4.

Niya, Sina Rafati and Burkhard Stiller. “Efficient Designs for Practical
Blockchain-IoT Integration.” NOMS 2022-2022 IEEE/IFIP Network
Operations and Management Symposium (2022): 1-6.

Ding, Sheng, Jin Cao, Chen Li, Kai Fan and Hui Li. “A Novel Attribute-
Based Access Control Scheme Using Blockchain for IoT.” IEEE Access
7 (2019): 38431-38441.

Pinno, Otto Julio Ahlert, André Ricardo Abed Grégio and Luis Carlos
Erpen De Bona. “ControlChain: Blockchain as a Central Enabler for
Access Control Authorizations in the IoT.” GLOBECOM 2017 - 2017
IEEE Global Communications Conference (2017): 1-6.

Lu, Yunlong, Xiaohong Huang, Yueyue Dai, Sabita Maharjan and Yan
Zhang. “Blockchain and Federated Learning for Privacy-Preserved Data
Sharing in Industrial IoT.” IEEE Transactions on Industrial Informatics
16 (2020): 4177-4186.

Zhao, Yang, Jun Zhao, Linshan Jiang, Rui Tan, Dusit Tao Niyato,
Zengxiang Li, L. Lyu and Yingbo Liu. “Privacy-Preserving Blockchain-
Based Federated Learning for IoT Devices.” IEEE Internet of Things
Journal 8 (2019): 1817-1829.

Naik, Nitin. “Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP” 2017 IEEE International Systems
Engineering Symposium (ISSE) (2017): 1-7.

Fdhila, Walid, Nicholas Stifter, Kristian Kost’al, Cihan Saglam and
Markus Sabadello. “Methods for Decentralized Identities: Evaluation
and Insights.” International Conference on Business Process Manage-
ment (2021).

Lua, Eng Keong, Jon A. Crowcroft, Marcelo Rita Pias, Ravi Sharma and
Steven Lim. “A survey and comparison of peer-to-peer overlay network
schemes.” IEEE Communications Surveys & Tutorials 7 (2005): 72-93.
Mao, Yifan, Soubhik Deb, Shaileshh Bojja Venkatakrishnan, Sreeram
Kannan and Kannan Srinivasan. “Perigee: Efficient Peer-to-Peer Net-
work Design for Blockchains.” Proceedings of the 39th Symposium on
Principles of Distributed Computing (2020):

Maymounkov, Petar and David Mazieres. “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric.” International Workshop
on Peer-to-Peer Systems (2002).

@0QxPhilillan and @FundamentalLabs, “Decentralized Storage: A Pillar
of Web3”, June 2022.

Protocol Labs, “Filecoin: A Decentralized Storage Network”, 2017.
Williams, Sam A., Viktor Diordiiev and Lev Berman. “Arweave: A Pro-
tocol for Economically Sustainable Information Permanence.” (2019).
Wilkinson, Shawn. “Storj A Peer-to-Peer Cloud Storage Network.”
(2014).

Whitepaper”,

3.07,

